Задания
Версия для печати и копирования в MS Word
Тип 13 № 520678

Через точку, лежащую на высоте прямого кругового конуса и делящую её в отношении 1 : 2, считая от вершины конуса, проведена плоскость, параллельная его основанию и делящая конус на две части. Каков объём той части конуса, которая примыкает к его основанию, если объём всего конуса равен 54?

Спрятать решение

Решение.

Плоскость, параллельная основанию конуса, отсекает от него конус подобный данному. Точка делит высоту в отношении 1 : 2, поэтому высоты отсеченного и исходного конусов относятся как 1 : 3.

Объёмы подобных тел относятся как куб коэффициента подобия, поэтому объем отсеченного конуса в 27 раз меньше исходного. Следовательно, он равен 54 : 27 = 2. Поэтому объем оставшейся части конуса, которая примыкает к его основанию, равен 54 − 2 = 52.

 

Ответ: 52.