Задания
Версия для печати и копирования в MS Word
Тип 4 № 500998

В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Спрятать решение

Решение.

Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий:

 дробь: числитель: 2, знаменатель: 6 конец дроби умножить на дробь: числитель: 4, знаменатель: 5 конец дроби умножить на дробь: числитель: 3, знаменатель: 4 конец дроби плюс дробь: числитель: 4, знаменатель: 6 конец дроби умножить на дробь: числитель: 2, знаменатель: 5 конец дроби умножить на дробь: числитель: 3, знаменатель: 4 конец дроби плюс дробь: числитель: 4, знаменатель: 6 конец дроби умножить на дробь: числитель: 3, знаменатель: 5 конец дроби умножить на дробь: числитель: 2, знаменатель: 4 конец дроби = дробь: числитель: 3, знаменатель: 5 конец дроби .

Другое рассуждение.

Вероятность того, что Петя взял пятирублевую монету, затем десятирублевую, и затем еще одну десятирублевую (в указанном порядке) равна

 дробь: числитель: 2, знаменатель: 6 конец дроби умножить на дробь: числитель: 4, знаменатель: 5 конец дроби умножить на дробь: числитель: 3, знаменатель: 4 конец дроби = дробь: числитель: 1, знаменатель: 5 конец дроби .

Поскольку Петя мог достать пятирублевую монету не только первой, но и второй или третьей, вероятность достать набор из одной пятирублевой и двух десятирублевых монет в 3 раза больше. Тем самым, она равна 0,6.

 

Ответ: 0,6.

Приведем другое решение.

Количество способов взять 3 монеты из 6, чтобы переложить их в другой карман, равно C в кубе _6. Количество способов выбрать 1 пятирублевую монету из 2 пятирублевых монет и взять вместе с ней еще 2 десятирублевых монеты из имеющихся 4 десятирублевых монет по правилу произведения равно C в степени 1 _2 умножить на C в квадрате _4. Поэтому искомая вероятность того, что пятирублевые монеты лежат в разных карманах, равна

 дробь: числитель: C в степени 1 _2 умножить на C в квадрате _4, знаменатель: C в кубе _6 конец дроби = дробь: числитель: 2 умножить на 6, знаменатель: 20 конец дроби =0,6.